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ABSTRACT: In this present work, a model on predator-prey system is proposed and analyzed. It is 
considered that both the prey and predator species are harvested at different harvesting rates. There are 
considerable evidences that there exist alternative food source for the predator population. It has been 
shown that the dynamics of prey-predator is largely affected by the presence of alternative food for predator 
population. Conditions for the existence and stability of all feasible equilibrium points are obtained. 
Furthermore, it has been shown that addition of alternative food resource and controlled harvesting makes a 
positive impact on the stability of non-zero equilibrium point.  Uniform persistence of the system is also 
discussed. Numerical simulations are given to justify the obtained theoretical results. 
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I. INTRODUCTION 

The study of population dynamics is one of the most 
studied branch of mathematical biology. Mathematical 
models have been developed to prevent the extinction 
of the species due to several reasons like exploitation of 
resources, uncontrolled harvesting, excess predation 
etc [1-2, 6, 14-18]. Moreover it has been observed that 
presence of alternative food makes a positive impact on 
the predator population. The fact is justified by Abrams 
and Routh [3] where a theoretical model is established 
as model of additional tropic levels. Sometimes, 
alternative prey consume natural resources for their 
growth, therefore due to less accessibility of resources, 
number of target prey decreased. Baalen et al. [4], Rijn 
et al. [5] observed that, presence of alternative food 
resource for predator population ultimately decreases 
the focal prey population. Harwood and Obryeki [7], Holt 
and Lowton [8], Wootton [9] observed that presence of 
alternative food for predator does not always make 
positive impact on the predation of modeled prey 
species. Considerable work is done by Spencer and 
Collie [10] where they acknowledged the verity by taking 
intra-specific competition in predatory fish. The 
existence of alternative food source can increase 
predator abundance when modeled prey abundance is 
low. Srinivasu et. al. [11] also considered the quality of 
food provided in a two dimensional prey predator 
system. In this continuation, significant impact of 
alternative food source in exploited prey-predator 
system has been studied extensively by Pahari et. al. 
[12] and Kar et. al. [13]. Ganguly [19] considered a prey-
predator model where additional food is available for the 
predator species. In his paper, only prey species has 
been harvested at a constant rate. In the present paper, 
we considered that both the prey and predator species 
have been harvested by different harvesting agencies.  
The combined effect of harvesting and additional food 
available for the predator species has been studied 
extensively.  

II. FORMULATION OF THE MODEL 

Let us consider a two species prey predator model with 
harvesting of both the species. The prey population 
follows logistic growth with ‘r’ as intrinsic growth rate 
and ’K’ as the carrying capacity of the environment. The 
prey and predator species are also subjected to 
harvesting with harvesting attempt E1 and E2 
correspondingly. Let  γ1  

and  γ2 be the catch ability 
coefficients of prey and predator species. ‘d’ is natural 
mortality rate for the predator species. We assumed that 
predator takes ‘A’ part from the focal prey and 1-A part 
from the alternative food source. If A=0, then it means 
that predator species becomes independent of available 
focal prey species, which is neither relevant nor 
revealing. Similarly, if A=1, then it means that there is no 
role of alternative food source in predator growth. So to 
study extensively the dynamics of harvested prey 
predator system, it is quite natural to assume that 0 < A 
< 1. 
Based on the above assumptions, we write the following 
equations for our eco- epidemiological model. 

1 11
dx x

rx Axy E x
dt k

α γ
 

= − − − 
 

 

   
2 2(1 )

dy
Axy A y dy E y

dt
αβ γ= + − − −         (1)             

( )0 (0) , 0 (0)x k y≤ ≤ ≤  

III. EQUILIBRIUM POINTS 

 The system can have following different equilibriums 
(a) The trivial equilibrium point E0 (0,0), where both prey 
and predator populations extinct. 

(b) A prey free equilibrium point ( )1 1 ,0E x , where 

1 1 1( )
K

x r E
r

γ= −
 
which exist 

 

e
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if                           
1

1

r
E

γ
<                        (2) 

 (c) An endemic positive equilibrium E*(x*, y*), where 
 x* and y*

 
are the solutions of the following equations: 

( )* *

1 1

*

2 2

1 0

(1 ) 0

xr Ay E
K

Ax A d E

α γ

αβ γ

− − − =

+ − − − =

 

Now from the second equation, we have  

* 2 2 1d E A
x

A

γ

αβ

+ − +
=

 which exist if A>1-d-γ2E2 
 

Now substituting this value of x*
 
in first equation, we get  

* 2 2

1 1

11 d E Ar
y r E

A K A

γ
γ

α αβ

 + − + 
= − −  

  
, exist if  

2 2

1 1

1 1

( )
and 0

( )

r d E
A r E

K r E

γ
γ

αβ γ

+
> − >

−
                         (3) 

Theorem: The non zero interior equilibrium point E*(x*, 
y*) exists if 

 2 2
2 2 1

11 1

( )
1 , and

( )

r d E rA Max d E E
K r E

γ
γ γαβ γ

 +
> − − < 

− 
 

IV. POSITIVITY AND UNIFORM BOUNDEDNESS 

Lemma 1: All the solutions of the system (1) which 

initiate in 2
R+

 
will remain positive forever. 

Proof: - The first equation of the system (1) can be 
written as        

1 1

dx
1

x

x
r Ay E dt

K
α γ

  
= − − −  

  
 

Which is of the form  

1 ( , )
dx

x y dt
x

φ=  

Where 1 1 1( , ) 1
x

x y r Ay E
K

φ α γ
 

= − − − 
 

 

Now integrating the above equation from [0, t], we have 

1
0

( , )

( ) (0) 0

t

x y dt

x t x e
φ∫= >  

Similarly second equation of the system (1) can be 
written as  

( )2 2

dy
(1 )

y
Ax d E A dtαβ γ= − − + −  

Which is of the form  

2 ( , )
dy

x y dt
y

φ=  

Where 
2 2 2
( , ) (1 )x y Ax d E Aφ αβ γ= − − + −  

Integrating the above equation from [0, t], we get 

2
0

( , )

( ) (0) 0

t

x y dt

y t y e t
φ∫= > ∀  

Hence Proof. 
Lemma 2:  All the solutions of the system (1) will be in 

the region ( ) 2, : 0R x y R x y µ
λ+

 = ∈ ≤ + ≤
    

as 

t → ∞
 

for all positive initial values 2
( (0), (0))x y R+∈   

where { }1 1
Min ,E dλ γ=

 
and (1 )rx A yµ = + −  . 

Proof: - We define a function W as follows 

Let ( ) ( ) ( )W t x t y t= +  

So 
dW dx dy

dt dt dt
= +  

2

1 1 2 2
( 1) (1 )

rx
rx E x dy Axy E y A y

K
γ β α γ= − − − + − − + −

1 1
(1 )rx E x dy A yγ≤ − − + −  as 1β <  

(1 )rx A y Wλ≤ + − − where { }1 1M in ,E dλ γ=  

So 
dW

W
dt

λ µ+ ≤ where  

(1 ) 0 as 1rx A y Aµ = + − > <  

Applying the theory of Differential Inequality, we get  

( )0 ( , ) (1 ) (0), (0)
t t

W x y e W x y e
λ λµ

λ
− −≤ ≤ − +  

As ,t → ∞  we get 0 W
µ

λ
≤ ≤  

So all the solutions of the system (1) are uniformly 
bounded. 
Lemma 3: The model system (1) under the assumptions 
cannot have any periodic solution in the interior of the 
positive quadrant of xy plane. 

Proof: - Let  
1

( , )H x y
xy

=   

Clearly ( , )H x y is positive in the interior of the positive 

quadrant of xy plane. 

Again let 
1 1 1( , ) 1

x
h x y rx Axy E x

K
α γ

 
= − − − 

 
 

and 
2 2 2
( , ) (1 )h x y Axy dy E y A yαβ γ= − − + −  

Now 1 2( , ) ( ) ( )x y h H h H
x y

∂ ∂
∆ = +

∂ ∂
 

1 1 2 2 1
1

E Er x d A
A A

x y K y y x x x

γ γ
α αβ

 ∂ ∂ −  
= − − − + − − +    

∂ ∂    
 

= 0
r

Ky

−
< . 

V. STABILITY ANALYSIS AND UNIFORM 
PERSISTENCE 

The following theorems are direct consequences of 
linear stability analysis of the system (1)  

Theorem 1: The trivial equilibrium ( )0 0,0E  is locally 

stable if 1

1

r
E

γ
>  and 

2 2
1A d Eγ> − −

 

 
Proof: - The Eigen values for the equilibrium ( )0 0,0E

are given by
 

                          

1 1 1 2 2 2
, 1r E d E Aξ γ ξ γ= − = − − + −  

So  
1 2
, 0ξ ξ <  iff   1

1

r
E

γ
>  and 

2 2
1A d Eγ> − −            (4) 

Theorem 2: The prey free equilibrium ( )1 1
 ,0E x  if exist, 

is locally asymptotically stable for  
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1 1

2

2

( ) ( 1 )AK r E r d A
E

αβ γ

γ

− − − +
> ,  

where 
1 1 1

( )
K

x r E
r

γ= −   

Proof: - The Eigen values for the equilibrium ( )1 1
 ,0E x are 

given by
 

      1
1 2 1 2 20, 1 .

rx
Ax d E A

k
ξ ξ αβ γ= − < = − − + −  

 

Clearly  
1

0.ξ <   

Again  
2

0ξ < iff 

1 1
2

2

( ) ( 1 )AK r E r d A
E

αβ γ

γ

− − − +
> .          (5) 

Theorem 3: The positive endemic equilibrium ( )* ,E x y∗ ∗  

is locally asymptotically stable for all parametric values. 

Proof:-The Eigen values for ( )*
,E x y

∗ ∗  are given by the 

equation                     2 2 2 * * 0
rx

A x y
k

ξ ξ α β
∗

+ + =  

Here 
1 2
,ξ ξ  are roots of above equation having the 

entire coefficients positive. So 
1 2
,ξ ξ  are clearly 

negative. Hence ( )*
,E x y

∗ ∗  is always locally stable. 

Theorem 4: The model system (1) is uniformly 
persistent if the following conditions hold.  
 

1 1 2 2
1 0 , (1 ) 0

x
r A y E A x d E A

K
α γ α β γ

 
− − − > − − + − > 

 

                        
Proof: Consider the Lyapunov function of the form 

( , )
p q

x y x yσ = , where p and q are assumed to be 

positive constants. 

Obviously ( , )x yσ is a 
1

C positive function defined in 

2
R+ and ( , ) 0x yσ → if one of , 0.x y →  

Consequently, we get 
( , )

( , )
( , )

x y
H x y

x y

σ

σ

′
=   

1 2p pdx dy

x dt y dt
+  

= ( )1 1 1 2 2 2
1 (1 )

x
p r A y E p A x d E A

K
α γ α β γ

  
− − − + − − + −  

  

 

Now, we have proved in lemma that there is no periodic 

orbit in boundary planes, then for any initial point in 2
R+ , 

the only possible H-limit set in the boundary planes of 

the system (1) is the equilibrium point ( )* ,E x y∗ ∗ . Thus the 

system (1) is uniformly persistent if *
( ) 0H E > at each 

of these points. So *
( ) 0H E > for any positive constants 

p and q if the following conditions hold.  

1 1 2 2
1 0 , (1 ) 0

x
r A y E A x d E A

K
α γ α β γ

 
− − − > − − + − > 

 

Then strictly positive solution of the system (1) doesn’t 
have any H-limit set in the boundary planes. Hence the 
system (1) is uniformly persistent.  

VI. NUMERICAL SIMULATIONS 

Numerical simulations have been carried out to study 
the dynamics of the proposed 2-D model (1). Consider 
the following set of parametric values: 

    
1 1 2 2

0.1, 20, 0.1, 0.15, 0.5,

0.6, 0.2, 0.9, 0.5, 0.8,

r k d

A E E

α β

γ γ

= = = = =

= = = = =
   (6) 

The system (1) has equilibrium point ( )0 0,0E  for the 

data set (6). It is locally asymptotically stable by 

Theorem (1), as the computed value of 
1

E  is so large 

and the value of A is so adjusted that the equation (4) is 
satisfied (Fig.1).  

 
Fig. 1. Time series plot of the model equation (1) for the stability of equilibrium point E0(0,0). 

Again Consider the following set of parametric values: 
    

1 1 2 2

0.1, 20, 0.1, 0.15, 0.5,

0.5, 0.2, 0.45, 0.5, 0.8,

r k d

A E E

α β

γ γ

= = = = =

= = = = =
(7) 
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We had taken all the parametric values same as in data 
set (6) except the values of E1 and ‘A’ are so adjusted 
that the equations (2) and (5) are satisfied. System (1) 
has equilibrium point E0(2,0). It is locally asymptotically 

stable by Theorem 2. So it is observed that if prey 
species has been subjected to reasonable harvesting, 
then it can survive in the environment (Fig. 2). 

 
Fig. 2. Time series plot for the model equation (1) for the stability of equilibrium point E1(2,0).   

Now if we take consider the parametric set of values 

1 1 2 2

0.1, 20, 0.1, 0.15, 0.5,

0.5, 0.2, 0.45, 0.5, 0.8,

r k d

A E E

α β

γ γ

= = = = =

= = = = =
   (8) 

System (1) has non-zero equilibrium point E* (5, 0.125) 
for the data set (8). The role of controlled harvesting is 

justified here. Further it has been shown that if the value 
of additional food resource for the predator population 
satisfies the equation (3), then both the prey and 
predator populations co-exist, which is good for our 
biodiversity (Fig. 3).  

 
Fig. 3. Time series plot for the model equation (1) for the stability of positive endemic equilibrium point E

*
(5,0.125). 

V. CONCLUSION 

In this present work, a harvested model on predator-prey 
system is proposed and analyzed. The role of controlled 
harvesting has been justified here. It has been shown 
that existence and stability of non-zero equilibrium point 
depends upon the harvesting effort employed and the 
value of additional food resource available for the 
predator species. It has been observed that if the 
harvesting effort for prey species is such that E1 =

 0.9, 

then both the prey and predator species extinct from the 
environment, which is not good for the biodiversity. On 
decreasing the value of harvesting effort of prey to E1 =

 

0.45  and keeping E1 =
 
0.8, it has been observed that the 

equilibrium point E1 = (2,0)  exist and stable. So a 
reasonable harvesting of prey and predator species is 
helpful in preserving the prey population. Further it has 
been found that if E1 =

 
0.45, E2 = 0.8, A = 0.5, then both 

the prey and predator populations survive. Uniform 
persistence of the system is also discussed. Numerical 
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simulations are given to justify the obtained theoretical 
results. 
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